Speaker State Classification Based on Fusion of Asymmetric SIMPLS and Support Vector Machines
نویسندگان
چکیده
This paper describes a Speaker State Classification System (SSCS) for the INTERSPEECH 2011 Speaker State Challenge. Our SSC system for the Intoxication and Sleepiness SubChallenges uses fusion of several individual sub-systems. We make use of three standard feature sets per corpus given by organizers. Modeling is based on our own developed classification method Asymmetric simple partial least squares (ASIMPLS) and Support Vector Machines (SVMs), followed by the calibration and multiple fusion methods. The advantage of asymmetric SIMPLS is prone to protect the minority class from being misclassified and boosts the performance on the majority class. Our experimental results show that our SSC system performs better than baseline system. Our final fusion results in 1.8% absolute improvement on the unweighted accuracy value for the Alcohol Language Corpus (ALC) and about 0.7% for the Sleepy Language Corpus (SLC) on the development set over the baseline. On the test set, we obtain 1.1% and 1.4% absolute improvement, respectively.
منابع مشابه
A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملFace Recognition using Eigenfaces , PCA and Supprot Vector Machines
This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011